Analisis Sentimen Terhadap Kinerja Kepolisian Indonesia Menggunakan Metode Multinomial Naive Bayes, Long Short-Term Memory, dan Lexicon-Based

Finsa Nurpandi, Fietri Setiawati Sulaeman, Aditya Hermawan

Abstract


According to the Indonesian Survey Institute, the public trust index in the Indonesian Police decreased to 53% as of October 2022. The level of public satisfaction and trust in police can be measured by examining how the police handle each case that occurs. This research focuses on analyzing and measuring the public’s sentiment toward the police’s performance among Twitter users in Indonesia. After scraping (collecting) data from Twitter, out of the 14,000 collected tweets, only 12,222 tweets were for analysis after the preprocessing stage. Then, the data was labeled into two categories, negative sentiment and positive sentiment using InSet Lexicon. The results showed that 53% (6,478) tweets have a negative sentiment, while 47% (5,744) tweets have a positive sentiment. The topics frequently appear and discussed related to such as the shooting case of Brigadier J, the Kanjuruhan tragedy, the security of the G20 Bali Summit, securing Christmas 2022 and securing New Year 2023. Subsequently, classification was performed on the test data using the Multinomial Naïve Bayes and Long Short-Term Memory (LSTM) methods. In the testing phase, a confusion matrix used to calculate accuracy, recall, precision, and f1-score. The results showed that the Multinomial Naïve Bayes method achieved an accuracy score of 78%, precision of 78.5%, recall of 77%, and an f1-score of 77%, with an average score of 77.6%. Similarly, the LSTM method resulted in an equal accuracy, precision, recall, and f1-score of 87%.


Keywords


sentiment analysis, Inset Lexicon, LSTM, Multinomial Naive Bayes, Twitter

References


Simon Kemp, “DIGITAL 2022: INDONESIA.” Accessed: May 11, 2023. [Online]. Available: https://datareportal.com/reports/digital-2022-indonesia

Monavia Ayu Rizaty, “Pengguna Twitter di Indonesia Capai 18,45 Juta Pada Tahun 2022.” Accessed: May 11, 2023. [Online]. Available: https://dataindonesia.id/internet/detail/pengguna-twitter-di-indonesia-capai-1845-juta-pada-2022

M. Hidayatullah, S. Alam, and I. Jaelani, “Sentiment Analysis of Police Performance On Twitter Users Using Naïve Bayes Method,” vol. 2, no. 2, p. 2021, Accessed: May 11, 2024. [Online]. Available: https://journal.institutpendidikan.ac.id/index.php/ristec/article/view/96

Lembaga Survey Indonesia, “RILIS LSI 20 OKTOBER 2022.” Accessed: May 11, 2023. [Online]. Available: https://www.lsi.or.id/post/rilis-survei-lsi-20-oktober-2022

F. Agung, J. Ayomi, and K. E. Dewi, “ANALISIS EMOSI PADA MEDIA SOSIAL TWITTER MENGGUNAKAN METODE MULTINOMIAL NAÏVE BAYES DAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, 2023, [Online]. Available: https://ojs.unikom.ac.id/index.php/komputa/article/view/9454

A. Deviyanto, M. R. Didik Wahyudi, and T. Informatika UIN Sunan Kalijaga Yogyakarta Jl Marsda Adi Sucipto No, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” Jurnal Informatika Sunan Kalijaga), vol. 3, no. 1, pp. 1–13, 2018, [Online]. Available: https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/31-01

M. R. Faisal, D. Kartini, and T. H. Saragih, Belajar Data Science: Text Mining Untuk Pemula I. 2022. [Online]. Available: https://www.researchgate.net/publication/359619425

A. Sabrani, I. W. Gede Putu Wirarama Wedashwara, and F. Bimantoro, “METODE MULTINOMIAL NAÏVE BAYES UNTUK KLASIFIKASI ARTIKEL ONLINE TENTANG GEMPA DI INDONESIA (Multinomial Naïve Bayes Method for Classification of Online Article About Earthquake in Indonesia).” [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/article/view/87

A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial Naive Bayes for Text Categorization Revisited,” 2004. [Online]. Available: http://kdd.ics.uci.edu/.

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 820–826, Aug. 2021, doi: 10.29207/resti.v5i4.3146.

D. Sintia Amelia, N. Cahyana Aminuallah, and S. Informasi, “TEKS DAN ANALISIS SENTIMEN PADA CHAT GRUP WHATSAPP MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM),” Jurnal Teknologi Terkini, vol. 3, no. 2, p. 1, 2023, [Online]. Available: http://teknologiterkini.org/index.php/terkini/article/view/354

M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10188

L. Wiranda and M. Sadikin, “PENERAPAN LONG SHORT TERM MEMORY PADA DATA TIME SERIES UNTUK MEMPREDIKSI PENJUALAN PRODUK PT. METISKA FARMA,” Janapati, vol. 8, no. 3, 2019, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/19139

R. Arief and K. Imanuel, “ANALISIS SENTIMEN TOPIK VIRAL DESA PENARI PADA MEDIA SOSIAL TWITTER DENGAN METODE LEXICON BASED,” Jurnal Ilmiah MATRIK, vol. 21, no. 3, 2019.

R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “ANALISIS SENTIMEN PENGGUNA GOPAY MENGGUNAKAN METODE LEXICON BASED DAN SUPPORT VECTOR MACHINE,” Komputek, vol. 3, no. 2, 2019, [Online]. Available: https://studentjournal.umpo.ac.id/index.php/komputek/article/view/270

A. K. Fauziyyah and D. H. Gautama, “ANALISIS SENTIMEN PANDEMI COVID19 PADA STREAMING TWITTER DENGAN TEXT MINING PYTHON,” Jurnal Ilmiah SINUS, vol. 18, no. 2, p. 31, Jul. 2020, doi: 10.30646/sinus.v18i2.491.

G. Singh, B. Kumar, L. Gaur, and A. Tyagi, “Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification,” in International Conference on Automation, Computational and Technology Management (ICACTM), 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8776800




DOI: https://doi.org/10.35194/mji.v16i1.4165

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Media Jurnal Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal is licensed under a Attribution-NonCommercial-ShareAlike 4.0 License.

©All rights reserved 2017. Media Jurnal Informatika ISSN: 2477-2542 (online); 2088-2114 (cetak).


Gedung Fakultas Teknik UNSUR Jl. Pasir Gede Raya, Cianjur, Jawa Barat 43216| Telp./Fax. (0263) 283578 |E-mail: mji@unsur.ac.id; info@ft.unsur.ac.id


Media Jurnal Informatika Indexed By:

sinta-logogarudagooglecrossref